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A 3D numerical model for computing large rigid objects suspended in fluid flow
has been developed. Rather than calculating the surface pressure upon the solid body,
we evaluate the net force and torque based on a volume force formulation. The total
effective force is obtained by summing up the forces at the Eulerian grids occupied
by the rigid body. The effects of the moving bodies are coupled to the fluid flow
by imposing the velocity field of the bodies to the fluid. A Poisson equation is used
to compute the pressure over the whole domain. The objects are identified by color
functions and calculated by the PPM scheme and a tangent function transformation
which scales the transition region of the computed interface to a compact thickness.
The model is then implemented on a parallel computer of distributed memory and
validated with Stokes and low Reynolds number flowsy 1999 Academic Press
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1. INTRODUCTION

Solid objects contained in fluid interact nonlinearly with the surrounding flow and cree
complex flow patterns. By solid (or rigid) body (or object), we mean a mass of materi:
which does not experience any distortion in shape, and by “large body (or object)”
mean an object having a volume that covers at least several computational grids. In
very few cases can analytical results be obtained from simplified models. Most pract
problems appear to be difficult to tackle without the help of modern computing faciliti
or sophisticated computational techniques. Numerical studies for solid/fluid flow have
far been conducted by various numerical approaches. The continuum approach, whict
long been used to simulate the dynamics of a uniform fluid, has recently been exten
to solid/fluid flows. The computational models for the solid/fluid flows can be divide
into two sorts: the averaged particulate flow model based on mixture theory [9, 29] ¢
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the direct numerical simulation model [15, 8, 22]. In the averaged particulate flow moc
conservation laws similar to those conventional to one-fluid dynamics are used along \
some new terms to reflect the interactions between fluid and solid. An extra parameterize
is needed to close the system. The averaged models usually appear easy to compute,
not give the details of the interaction between the fluid and the solid. The direct numer
simulation approach, on the other hand, takes the physics between the flow and the -
into account by explicitly computing both the force and the torque acting on the solid &
the solid driving force exerted on the suspending flow.

In [15, 8], an arbitrary Lagrangian—Eulerian (ALE) technique was incorporated wi
a finite element formulation to simulate moving solid bodies in suspension flow. The
methods are able to deal with the translational and rotational motion of solids and apy
convenient for finding the hydrodynamic force upon the body surface. Hu [8] derivec
general Galerkin finite element formulation by combining the fluid and particle equatio
into a single variational equation, which cancels the force and the moment terms from f|
and solid. This makes computation more efficient. However, ALE and finite element-ba:
methods need remeshing at every step to fit the moving boundaries. This may become
computationally intensive in large 3D calculations.

Finite difference methods on a fixed mesh provide no computational cost for grid g
eration. This advantage appears more significant for time-dependent problems wher
finite element methods or body-fitted coordinate methods on an ALE base need to ren
the computational grids to conform to the moving interface at each time step. Howe
a separate problem needs to be solved for those finite difference methods: how does
compute moving or free interfaces on a fixed computational mesh? To solve this kinc
problem, numerical methods for tracking or capturing a moving interface or a free boul
ary on a fixed mesh have been developed. Among the most widely used are the work
Unverdi and Tryggvason [23], Youngs [28], and Osher and Sethian [16].

In this study, moving interfaces are computed on a fixed, finite difference mesh. Cc
functions, which are valued 1 or 0 depending on whether a grid falls into the region c
solid body or not, are used to identify the moving objects. A scheme, namely PPM-T
(PPM with tangent function transformation), which is based on the PPM method [2] a
a tangent transformation, is used to advance the color function. The tangent function
scale the values falling in the transition layer and then modify the slope of the discontinu
which allows efficient control over the thickness of the transition region and avoidance
the numerical diffusion.

As a previous work on the computation of fluid-suspended large rigid objects, we de\
oped a numerical model for computing rigid objects suspended in a gravitationally stratif
flow in 2D [25]. The underlying idea is to calculate the net force and torque exerted on
object by a volume force formulation. The force is first computed at all the computatior
grids and then the integrated force and torque are evaluated through a summation ove
space occupied by the rigid body. There is no need to calculate the information about
surface of the object, which also is generally not a trivial computation on a fixed mesh.

In this paper, we constructed a 3D computing model for unsteady flows containi
rigid moving bodies, based on the fundamental consideration of [25]. The hydrodynat
equations are first computed over all of the grids. The net force driving the solid objec
then calculated by summing over all grids within the solid body. The driving effect fro
the moving body on the surrounding fluid is taken into account by replacing the veloc
field of the fluid with that of the solid body in the region occupied by the body. As oppos
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to an iterative procedure [17, 18], this treatment of the solid/fluid coupling does not requ
an extra computational step.

This paper is arranged as follows. The treatment of a sharp interface on a fixed 3D Ce
sian meshis presented in Section 2. The physical and computational aspects of the solid
dynamics are described in Section 3. The solution procedure is outlined in Sectiol
Section 5 briefly discusses the parallel implementation of the code. Numerical validati
and testing computations are given in Section 6, and Section 7, a short conclusion, end
paper.

2. MOVING INTERFACE TREATMENT

There are some existing methods for numerically tracking the sharp interface of a n
tiphase flow based on Eulerian representation. The VOF method [7, 28, 11, 12] and
level set method [21], for example, are among those widely used. For the current probl
however, we can make use of a more efficient numerical treatment to compute the sharf
face of the rigid body. The numerical technique involved is just a high-resolution schel
for a hyperbolic equation (in the present work, the PPM method is used) and a tanc
transformation.

ConsiderL kinds of materials occupying closed areas that are embedded in the cc
putational domaiff©(t) eR3,1 = 1,2, ..., L}. We identify all the objects with density

functions or color functiongg (X, y, z, 1), =1, 2, ..., L} by the definition
1, (X,y,2) € (1),
X! 9 Z? t = .
hx.y ) {O, otherwise
The color functions are then predicted according to the advection equation
d
%Jru-wm:o, =12 ..., L, 1)

whereu is the local velocity. It is commonly known that almost all the finite difference
schemes based on Eulerian representation tend to produce numerical diffusion. We
observed from our previous experience that the PPM method [2] has the ability to elimir
spurious oscillation and preserve the geometry of the object when used as an adve
solver. However, like any other finite difference method, the PPM produces numerical «
fusion that smears the initial sharpness of the discontinuity and then cannot maintain
compactness of the interface. In an earlier work [27] we used a tangent function to scale
dependent variable before solving it with the advection scheme. We found that such a tr
formation also works well with the PPM scheme. The resulting computational procedt
is quite simple and gives a transition layer of compact thickness for the color function.

We solve the advection equation for the tangent transformation of the color functi
rather than the color function itself and then go back to the original field variable by
inverse transformation. This procedure, which we call the PPM-TFT method, can be simr
described as the follows:

e transforme, into F(¢,) for all | by
F(¢) = tan[(1 — e)m(¢n — 0.5)]
e solveF(¢) for all | by the PPM method
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e invert F(¢) back tog, for all | by
¢ =tan *F(¢)/[(1 - e)m] + 05,
wheree is a small positive.

We found that the tangent function transformation locally improves the spatial resoluti
near the large gradients, and then the sharp discontinuity can be described quite easil

The free parameterneeds to be chosen atrtificially before calculation. According to th
feather of the tangent function, a smalkeresults in a numerically sharper slope acros:
the transition layer. However, asgoes to zero the tangent function approaches infinit
aroundg, =0 or 1; one has to make a choice among finite positives to avoid the arithme
instruction failure in computation. From numerical experiments, we found that a val
smaller than 0.05 produced a sharp transition layer which usually covers no more than
computational grid points. In the current study: 0.01 was used for all the calculations.

Concerning the computational efficiency of this method, a comparison is given in [2
We observed that the PPM-TFT method takes only 62.8% of the time consumed by
VOF(PLIC) method [11] and only 72.2% of the time of the level set method with reinitia
ization [21] in the 2D case.

As a 3D testing problem of the PPM-TFT scheme, we used the example of a rotat
notched brick, which was also used in [19, 12] to evaluate the performance of the S
method and the PLIC method. A brick of initial shape as shown in Fig. 1 is partitione
into 24x 20 x 15 volume cells and calculated on a4@iesh. Figure 2 is the result after
one circle of rotation with only the PPM. We observe that the object has been smec
significantly. Figure 3 shows the result computed by the PPM-TFT methed)(05).

FIG. 1. Initial surface of a notched brick. The color function is valued 1 inside the brick and 0 otherwise.
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FIG. 2. The 0.5 isosurface of the notched brick after one revolution computed by the PPM method.

FIG. 3. Same as Fig. 2 but by PPM-TFT wi¢h=0.05.
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FIG. 4. Same as Fig. 2 but by PPM-TFT wi¢h=0.01.

The PPM-TFT scheme produced a diffusionless solution, and furthermore the solutio
more topologically preserved when compared with those from the VOF(PLIC) method
result fore =0.01 is shown in Fig. 4. Witle decreasing, the transition layer becomes eve
narrower and the solution looks even “tougher.” Figure 5 displays the contours on the ci
section cutting through the notched head. As mentioned above, the PPM scheme prod
a diffused profile, while the PPM-TFT method resolves the transition layer within a wid

of just one or two mesh units.
3. THE NUMERICAL MODEL
3.1. The Governing Equations

A set of hydrodynamical equations is used to model the suspending flow. We start fr
a set of equations for a general Newtonian viscous fluid

a

S+ UV)p=—pV-u 2)
au 1

— 4+ U-V)u=—-V.(—pl +71)+F, (3)
at P

8—eJr(u-V)ez—EpV-unub, 4)
ot 0

where the inner energyis defined ag=c,T. t =A(V - u)l 4+ 2usis the viscous stress
tensorl is a unit tensor. andu are the two coefficients of viscosityis the tensor for rates
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FIG.5. (a)Contours on the cross section of the notched head calculated by the PPM scheme. The lines inc
the values of 0.1, 0.5, and 0.9, respectively. (b) The same as (a) but by the PPM-TFT reet®ay).

of deformationF is the body force, and® = A(V - u)2 4 2us- sis the dissipation function.
The thermal conduct is neglected.

Equations (2)—(4) are for compressible flow. However, as we will see later it is possil
to treat incompressible flow, computationally, as a limit case of compressible flow. In or¢
to derive a more general computational formulation that covers both compressible |
incompressible cases, a fractional step procedure is used to solve the governing equa

Applying time splitting reduces the equations to the following three parts:

1. Advection phase:

ap _
E+(U~V)p—0, (5)
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d
SLHuu=0, (6)
ge +@Uu-V)e=0 (7
ot o
2. Nonadvection phase (i):
p = p(e p). (8)
ap
= = _pV.-.u, 9
ot pV-u ©)
au 1
— =—-Vp, 10
P P p (10)
oe p
— =—=V-u (11)
ot 0
3. Nonadvection phase (ii):
au 1
—=-V. F 12
=57 " +F, 12)
ae
— =&, 13
ot (13)

The physical variables are updated at each fractional step by using the provisional re:
from the previous step. Supposing the new values of dependent variabtésp™+!, e*+1,
u"+1) are computed from the known values at the previous §epp", €, u"), we make
use of the following fractional steps on time intervial f,.1]

*

ax

el L, x, x™, (14)
aX** 3 .
=L X X (15)
and
8Xn+1 B .
T == L")’?‘ ADZ(t’ Xa X* ) (16)

wherey represents each @f, p, e, u, v, andw; £4°, LY AP, and L ~AP2 represent the
spatial differencing for thedvection phasenonadvection phase (ipnd nonadvection
phase (ii) respectively. We will find, as follows, that this fractional step treatment wil
introduce a global error on the order Of At).

Suppose that we use one-step methods for all the fractional parts, and assume an
starting datax"; then any nonfractional step method on a uniform mesh spacing can
written as

XM= X" = AL X, 1)+ ALY AL, X, x™) 4+ ALY AP, X, ¢ ™)
+ O(At(PAD+1) + Ath(QAD+1)> + O(At(pN—ADl‘HI-) + Ath(qN—ADl"’l))
+ O(At(pN—ADZ‘HL) + Ath<qN’AD2+l)), (17)
wherepap, dap, Pn_aD1, AN—aD1, @aNdPN_ap2, On—ap2 are the leading truncation orders of

the time and space discretizations for each fractional tefis the time increment anld
the mesh width.
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By assuming a smoothness&f°, £} P, and L) ~AP2 with respect tgy, we observe
that the fractional step treatments (14)—(16) have truncated errors as

x* = x" = AL x, x™) + O(AtPoHD 4 Ath@etD), (18)
N—-AD1

oL
X** _ X* — Atﬁ)l;lfADl(t’X’ Xn) + O(AtZ)EQDXi
ax

4 O(At(pN—ADl‘H-) + Ath(qN—ADl"rl))’ (19)

n

N—-AD2

a

*

4 O(At(pN—ADZJFl) + Ath(QN-ADz+1)>

—AD2

LN
= ALY APt x, 5" + O(Atz)EQDgix

n

—AD2

LN
e) Atz EN*ADl X
O L)L

*

+ O(At(pN—ADZJrl) + Ath(qN—ADZ“Fl)). (20)

Combining Egs. (18)—(20) and comparing the resulting expression with (17), one fir
that each fractional step introduces@t?) local error to the solution. Even ifitis possible
to obtain a higher order splitting by some extra manipulations, for example, the symmetr
Strang splitting [20], the fractional steps in the present model are arranged in an orde
nonadvection phase (ihonadvection phase (jipndadvection phaséor simplicity. The
Euler integration method (both explicit and implicit) are used for each substep; thus tt
we end up with a solution witkD (At) global error.

This splitting technique permits a large variety of solution methods for the equations
the different phases. One can generally divide the nonadvection phase into the equatic
state-related part, the constitution equation-related part, and the source-related part. ¢
implicit numerical formulations can be employed for stabilizing the computation in ca
stiffness appears . By the scheme developed in [26], the equationsaofitbetion phasean
be solved on a compact stencil. As the equation of state-relatechpasgvection phase (i)
reflects the aspect of fluid compressibility. By treating this part separately, we can obta
formulation to deal with flows of quite different compressibilities, from compressible flui
to nearly incompressible fluid. We will next derive a formulation for computing pressu
from the equations of theonadvection phase (i)

From Eqg. (10), we get a calculation formula as

Vp _ 3 ) _i_ )Rk CINF
v.(p>__8t<v W) = [=(V- 0™ + (V- uy]. (21)

The superscripts and** indicate the provisional values before and after the calculatio
of thenonadvection phase (iBy operating on (8) wittd /at and considering the continuity
relation Eq. (9), we have

ot seat  apot oeat 'op

o _opie opip _pie b 2



COMPUTING SUSPENDED LARGE RIGID BODIES IN 3D 357

From (22) and (11), there is

ap=ap<_pv.u>_p8pv.u

at — de\ p 3
pap  ap

V-u. 23

<038+ 8p) - (23)

Making use of a temporally implicit velocity in above expression, we have

op /(pop . ap
v.ouyr=_2P Py 24
V- at (p ae+pap> (24)

Combining Eg. (24) with Eq. (21), one gets

vp p/(pPdp dp
v(p) At<8t/<p8e+p3)+—(v u*. (25)

Equation (25) is an evolution equation of presspr®ne candidate of the time integration
formula is

v(ﬂ) =P p)/{At (pae papﬂ +AI(V W (6)

We then obtain a Poisson type equation for calculating pressure. The first term on
RHS of Eq. (26) reflects the effects of the assumed local thermodynamic equilibrium,
which the contributions from compressibility are included. In fa(é’t %g + ,o )/,o]l/2 =C
represents the speed of sound for any given equation of state (EOS) As a limit case,
can choose an equation of state so thgbes to infinity. The first term on the RHS of (26)
then vanishes, and Eq. (26) approaches

vp\™ 1 .
V-(p) = (V-0 (27)

By projecting the velocity with the pressure field computed from (27), one gets
divergence-free velocity field. This is the case of incompressible flow.

In general, EOS data can be input to the simulations using either tabular data librarie
prescribed functions. When large gradients of discontinuities appear, smoothed EOS
are needed to take numerical derivatives. The quotidian equation of state discussed in
is an example of the equations of state for practical simulations. In the present study,
materials involved are rigid bodies, liquid, and gas. The liquid and the gas are both assu
to have an equation of state in the form p& ype, but with quite a different speed of
sound.y = 0.4 was used for the gas, apd= 2.0 x 10* for the liquid.

Hence the equations failonadvection phase (Gan be rewritten as

vp\_ 1 /dp\ /(pdp  ap) 1
V'(?)‘m(m)/(pae* ap>+ V-, (28)
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au 1

i —;Vp, (29)

dp

i —pV - u, (30)
e=-e(p, p). (31)

By (31) we mean that the internal energy should be evaluated at this stage from
resultingp and p through the equation of state.

The Poisson equation @f is solved over all the computational domain, so the pressul
gradient force in the form of volume force is available at each grid within the solid boc
for calculating the total force exerted on that body.

Because of the existence of different material components, jumps in dependent varia
are expected to appear across material surface. In practice, it is important to make the jt
be bounded with finite values. This was done in our model by averaging both the E
and the velocity field with the color function. Integrating (26) over a volume containing «
object surface with a thickness which becomes infinitesimally small, we know that if o
assumes a bounded jump for the terms on the RHS of (26) across the material surface
resulting pressure gives a continuous distributiorﬂ; %ﬁ (n indicates a path normal to the
object surface) across the interface and gvdias a large jump across the boundary. Thus
one can use Eq. (26) to evaluate the pressure over the entire computational domair
get a reasonable pressure distribution across the material boundary. In the current s
we did not specify an EOS separately for any rigid object but used the same EOS as
surrounding fluid, and the velocity distribution was averaged over the interface, basec
the color function.

We have noticed that a more sophisticated treatment for such a problem can be del
from known jump conditions across the boundary [13]. Using the given jump conditions,
could attempt to get an overall second-order accuracy. Imposing the known jump conditi
on the algebraic equations from the discretization of (26), however, makes the solu
procedure more complicated. Another boundary treatment for Cartesian grid methods
also reported in [4], where a boundary is treated as a symmetry line and a inviscid flow fi
can be completely defined at the ghost cells via a reflecting boundary condition. Then,
boundary cells can be treated like regular cells. This method, however, needs to com
the orientation of the object surface and does not give a flow field over all the object regic

The averaging we use in the current model is relatively simple, but, as we will s
in Section 6, gives adequate results for a wide spectrum of problems of medium or |
Reynolds number flows.

The advection equation for color functigin

0
%—i—ub(l)-V(PI:O, l=1,2,...,L (32)

is added to the advection phase and solved by the above PPM-TFT method to recogni:
the solid bodies, wherey is the velocity field for objeck. The motion of the objedtis
determined by

Upgy = l7| +r X ﬁ|, (33)

whereu is the translational speed of the mass center of objéiqtthe angular speed, and
r the distance to the mass center. These quantities are predicted by the following Newt
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law of motion,
du -
S = (34)
and
d — — —
— (M) =10, (35)

dt

with f; being the net force an} the torque for objedt IT, is the tensor of inertia moment
and

1_[(I)xx 1-[(I)xy l_[(I)xz
g = | Ooyx Moy oz

1_I(I)zx 1_[(I)zy l_I(I)zz

is a symmetric second-order tensor.

3.2. The Coupling between Solid and Fluid

The impact forces from an accelerated solid body on the fluid are taken into accoun
imposing a change of motion on the boundaries through a no-slip boundary condition. T
means that the fluid on the rigid body surface should move with the body. We modify t
velocity distribution at every time step as

Gk = (L= dayi, k) Ui jk + B, j.kUbai, j.ks (36)

whereg j « is the color function andy i j « the velocity of the solid bodlyat grid point
@, j, k.

Imposing a change in velocity will obviously cause a response in the pressure field
order to clarify how the pressure responds to the velocity change, we can examine
disturbed pressure fiel caused by the imposed velocilyas follows.

Replacingu with { in the equations of theaonadvection phase (ive get a modified
Poisson equation for pressure as

Vp\*™ pap = dp 1
o (5F) o) oo

Letting p= p** — p** and recalling Eq. (36), we can recast Eq. (37) into
v (@) (5
0
ap 1
** At2 Lt (V.- *
-/ [ (Gie o) +me

pap ap 1 *
+p/{At ( 56 T 8,0)} +EV¢(I>'(UMI>—U )- (38)
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Comparing with Eq. (26), we have

VP _ . o(POP  9p\]", 1 0
V-(p>_p/[At (p Be+p3p)] +Atv¢(') (U = ). (39)

Since the interface remains sharp, the functgr) is a Heaviside type function and has a
generalized derivativg’ (x) defined by

@), ¥y(X)) = —(¢X), ¥' (X)), V¥ eCq

with
(a00.b00) = |~ aobeo dx
Thus, we have'(x) = §(x) and consequently ¢y = —n(X)8[N(Xp)) - (X — Xbay)], Xog)

represents any point on the surface of obje@ndn(x) is the outgoing normal vector.

Therefore
vp , 2(Pdp , ap\]|”
v. =) = A2 22 -
(p> p/{ t(pae+pap)]

- Aita [N(0)) (X = Xoa)) JN(0) - (Upa) = u”). (40)

Neumann type boundary conditions were used for the pressure field, and the rigid bo
were positioned far enough from the domain boundaries in our simulations to reduce
direct effect of the boundary conditions on the rigid bodies. We examfed the do-
main boundaries for some cases, and observedithats negligibly small on the domain
boundaries during one time step. Assuming thaanishes on the boundaries of the compu-
tational domain, we find that the velocity discontinuity in the direction normal to the boc
surface, i.e., the second term on the RHS of Eq. (40), is the only contribution to the pres:
change. Therefore if the imposed velocity produces a velocity discontinuity normal to |
body surface, an impulsive change in pressure will be introduced. For an accelerated b
a positive pressure disturbance will be created in the fluid ahead of it and a negative
will appear on the lee side, and vice versa for a decelerated body. This disturbed pres
will then build up a pressure gradient field that produces a fluid force back to the solid bo
This induced pressure field meanwhile produces a change in fluid velocity and makes
motion of fluid consistent to the moving body.

We use an explicit formulation to compute the viscosity intle@advection phase (ii)
Similarly, a no-slip condition on the rigid objects is imposed by Eq. (36) at every step.
viscous fluid field will then develop while the motion of the fluid elements on the boc
surface coincides with the motion of the moving body.

3.3. Formulation of a Rigid Object

By using color functions we can easily treat solid bodies or objects in any complex shs
or having heterogeneous density distributions. Supposing that solid objects are sepa
into different subregions where density remains constant, we treat bagatcombination
of the joint parts represented by color functiofig;, (0=1,2,..., Qq)). Qq) denotes
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the number of components that make up objedyq, is valued initially 1 for each sub-
region and O otherwise and eagfy, indicates a region where the densify, is uniform.
According to the definitions ap;, andgq), it is obvious that

Qu
P,k = Z DA, j k-

q=1

The motion of object can be decomposed into a translatipe= (U, v, wy) of the mass
center and a mean rotatiél) = (wix, @iy, wiz). Next, we derive the computational formula
for these quantities based on the color functions.

The mass center of tH¢h object can be computed directly from a volume integratior
formulation as

Qu

1
=N DO Xidaan. ko AXi Ayj Az, (41)
O ik g=1

Qu

1
Y= Ma) >3 Vidag.jkpag A Ay Az (42)
1k g=1

and

Qu

1
z = Moy Z Z ZkPagyi, j kg AXi AY) AZ, (43)
i1k g=1

where(i, j, k) indicates the computational grid, af, y;, zc) represents the coordinate
of point (i, j, k) in 3D spaceM, denotes the total mass of the object and is calculated

by

Qu

Mg = ZZ%q)i,j,kpaq)AXi AyjAz. (44)
i,j.k q=1

Since all the forces (including both the body force and the fluid stress) are calculate:
all grids in a volume force form as

fiik=—=Vp.jk+ V- -Dijk+ 0Pk (45)

it is convenient to compute the net force upon the mass center of oljgcumming up
all the forces over the object volume. That is,

1 Qu

fi = Mo D =Yk + (V- Oijk + aaFijkl@agi. jkAX Ayj Az. (46)
Ok g=1

After the net forcd, is calculated from (46), the translation motion of the mass center
evaluated by (34).

By Egs. (34) and (46), we evaluate the total force acting on the solid body in terms
“volume force.” We calculate the net force by summing up all the forces at the computat
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grids over the volume of the solid body. Different from the so-called “surface force” fo
mulation, the volume force-based schemes, as we used here, do not need the inform
of the body surface, such as the orientations and the surface areas, which appear in
difficult problems in computation.

Supposing that there is no support or fixed point to a solid body, we can include
rotation of a rigid body by considering an angular motion to its mass center. With t
mass center of a solid body known, the elements of the tensor of the moment of inertia
calculated as

Quy
Myxx = ZZ [(yj — Y2+ (z — Z)z] Amjk, (47)
ik q=1
Quy
Moy =3 [@ =22+ (x — %)% am; ju. (48)
ik q=1
Quy
M)z = ZZ [(xi — X2+ (y) — )7|)2]Ami,j.k, (49)
ik q=1
Quy
l_[(I)xy = 1_[(I)yx = - ZZ[(XI - )?I)(yj - %)]Ami,j,ka (50)
ik q=1
Quy
l_[(I)xz = 1_[(I)zx = - ZZ[(XI - )TI)(ZK - Z)]Ami.j,k, (51)
i,j,k q=1
Quy
l_[(I)yz = 1_[(I)zy = - Z Z[(yj - >7|)(Zk - Z)]Ami,j,k, (52)
ik =1

whereAm; j k = qq)i,j.kPdg) AXi AYj Az is the mass of one volume unit of the rigid object.
The components of moment of force (torquekiry, andz are computed as

Qu

Tix = > 15 = W0 faijk — (@ — 2) fyi ] baayi. | kAX Ay Az, (53)
i jk a=1

Qu

Ty =Y 12— 2) fxijk — 06 = %) F2i k] Baayi. | kAX Ayj Az (54)
i1k g=1

and

Qu

Tz = Y 106 = %) fyije = (¥ = W) il baayi. .k AX AY) Az (55)
i1k =1

For convenience of computation, the equation of rotational motion of rigid b@8y)
is written in the form

dw) — — ATy,
Z(Hamﬂ;’{’“) =Fla—2<wmd“t”*) @p=xYy2,  (56)
B

B

wheredIT).z/dt is approximated by differentiating the moment of inertia with respect t
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t. The resulting relations read

— Wi jk— )+ 2z —

Z)(wi jk — w)]AM; j i,

= Z Z[Z(Zk —2Z)(wijk — wi) 4+ 2% — X) (Ui jk — u)]AM; jk,

=3 20 — %) (Ui — T) + 2y,

)
XX
= [2(y;
dt i,j,k q=1
dg)yy o
dt =
Q
dn(l)zz “
dt i1k g=1
dlayxy _ dn(l)yx _
dt
dn(l)xz _ dl_I(I)zx _
dt —  dt
dllayz _ dMayzy _
dt dt

Qu)

ZZ[(X| - XI)(U| ik — ) + (yj —

i,j,k q=1

Qu)

i.j.kg=1

Qu)

— Wi jk— v)]AM jk,

363

(57)

(58)

(59)

YD Ui jk — up]Am; jk,

(60)

- Z Z[(Xi — X)) (wijk — w) + (Zk — Z) (Ui jk — UD]AM; jk,

(61)

ZZ[(V} — Y (wj, ik — wy) + (zx — 2) (v, ik — u)] Am;, ike

i,j,k q=1

From (56), we have the following evolution equationsdgy, wiy, andwi;,

and

where

*(U)Ix) =

dt

a(aly) =

dt

Ax = My

l_[(I)xx
Iyyx

I—[(I)zx
I—[(I)xx
Mayyx
l_I(I)zx

d _
—(wiz) =

nx g )XY
oy
mz  yzy

deth(

detH“) ’

det&y

detH(|)

detXu
detH(|>

1_[(I)xz
Mayyz |
1_[(I)zz

Mx 1_I(I)xz
Ny 1_I(I)yz s

Nz 1—I(I)zz

1_[(I xy  Mix
Hayy  my
l_[(I yzy Mz

(62)

(63)

(64)

(65)
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with
e = T — (‘m(;'t)ca + Mo dr;“t’“caz>,
my = Ty — (drglt)xya;lx L dl'([;lt)yya;ly n dl':;lt)yzc;lz>
and
e = T — (dr;";”cax L drgyzzaz).

Equations (34) and (63)—(65) are then integrated by the forward Euler method. Once
translational and rotational speeds have been determined, we end up with the veloci
thelth moving rigid object as

Ubyi,jk = Ul + oy (Zk — ) — wiz(Y] — W), (66)

Voyi jk = U + wiz(Xi — X)) — wix(Zk — 7) (67)
and

Wh(yi,jk = Wi + (Y] — Y) — oy (X — X). (68)

Itis obvious that the resulting velocity field for advancing the rigid body will never caus
any distortion on the body. According to the velocity field of the moving body (66)—(68
we used the sharp interface tracking scheme discussed in Section 2 to update the p
of the rigid body. In spite of a few minor and local deformations on the body surfa
due to numerical errors, a overall geometrically faithful solution to the moving object w
achieved.

4. BRIEF SUMMARY OF THE CALCULATION PROCEDURES

For simulating an unsteady flow suspending rigid moving objects, we need to calcul
alternately the net forces and torques acting on the objects, and the effects from the ma
objects on the fluid. The solid bodies and the fluid should be coupled during the ti
integration. The evolutionary solutions to the problems presented in this paper are comp
via the following fractional steps:

e Find the forces and the moment of forces exerted on the rigid objects and detern
their velocities by the numerical processes discussed in Section 3.3.

e Advance the solid bodies, according to the velocities obtained from the preced
step, to their updated positions by solving Eq. (32) with the interface tracking technic
discussed in Section 2.

e Modify, according to the updated color functions, the veloaity as

dol,l

Ui jk = (1 - ¢(|)i,j,k)Ui,j,k + P, j.kUb)i, j .k
enddo
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e Solve the Poisson equation (28). The matrix resulting from a central differen
discretizationis computed by the Bi-CGSTAB method [24] with a tridiagonal approximatic
factorization preconditionner [3].

e Calculate the velocityl and the density by the equations in thaonadvection
phase (i)(29) and (30).

o Calculate the inner energyby equation of state (31).

e Compute thenonadvection phase (ifpr u ande.

e Advance the physical variables for thdvection phasby the scheme presented in
[26].

e Repeat the procedure.

5. PARALLELIZATION ON A DISTRIBUTED MEMORY MACHINE

Directly and realistically simulating multimaterial dynamics of alarge scale in 3D requir
high-speed hardware with a large memory space. It is now widely recognized that o
parallel processing offers the potential of solving such a problem. Therefore, an impor
requirement is that a practical numerical code should be parallelable on various distribi
environments with moderate effort. We found that there is no substantial difficulty in porti
the present model to a parallel architecture. Some aspects of its parallel implementatio
the Fujitsu VPP/500 system at the Institute of Physical and Chemical Research (RIKI
will be discussed in this section.

Being a DM-MIMD (distributed memory and multiple instruction stream multiple data
machine, the RIKEN VPP500 system has 28 processor elements (PEs). Each PE has 25
of memory and is equipped with both scalar and vector processing units, which give
peak speed of 1.6 GFLOPS. Interprocessor communication is realized through a cros:
network.

The computational domain was divided into several subdomains by a grid-partitioni
algorithm. In the present computation, 1D partitioning was used to decompose the con
tational grids into nonoverlapping blocks, and each block is assigned to one processor. |
processor stores its own data while communicating with the other processors during
numerical solution procedure. To distribute the grid data to each processor and exch:
computed values among the processors both a local/local and a local/global communic:
are used. The local/global communication is done by mapping the global variable val
onto the corresponding local ones. Except for the Poisson pressure equation, all the re
the numerical model is written in an explicit sense. Therefore, we need only exchange
data at the boundary regions between neighboring subdomains. Due to the compactne
the advection solver in the present code, only one stencil of values next to the subdor
boundaries need to be communicated for the explicit parts. The elliptic Poisson equa
for pressure, which may contain discontinuous coefficients or singular sources, is curre
solved by the Bi-CGSTAB method [24] with a tridiagonal approximation factorization pre
conditionner [3]. This method guarantees, in most cases, the convergence of iteration
suffers from some communication overhead. When calculating the net force and tor
exerted on a solid body, operations of summation need to be conducted over the entire «
putational domain. This inner product-like procedure also causes communication acros:
different PEs.

In our computation, a 1D partition as shown in Fig. 6 was used. Along thieection,
the computational domain is subdivided equally into subdomains and each subdoma
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FIG. 6. A 1D partitioning of computational domain. Each block is assigned to one processor element.

assigned to one processor. Data reside separately in different processor elements ar
sequence of operations is identical across the processors.

As mentioned before, most of the calculations are conducted by explicit algorithms. |
these explicit parts, one needs only transfer the data to the halo cells from neighbo
processors, and do the operations separately within each PE. In the present model onl
halo cell is required at each interface.

The parallel computing procedure of the Bi-CGSTAB method with a preconditioner
tridiagonal approximation, used in the present model, is briefly discussed below.

For linear systemAx =h, the Bi-CGSTAB algorithm with preconditioning matrix
reads as follows:

Set:
ro = b — AXp, Xg is the initial guess
ro=ro;
po=0p=wo =1
Vo =Ppo=0;
fori =1,2,3, ...

pi = (i, 1i); Bi—1 = (pi/pi—1)/(eti—1/wi—1);
Pi =ri + Bi—1(Pi—1 — wi—1Vi—1);
SOLVE p from Kp = p;;

Vi = Ap;
ai = pi/(Vi, To);
S=T1 — Vi

SOLVE q fromKq = s,



COMPUTING SUSPENDED LARGE RIGID BODIES IN 3D 367

u=Ag;

wi = (U, 9)/(u, u);

Xiy1 =X +aip + wiQ;

lit1 =S—wiy;

if Iricall/lIb]l < er then quit
end

The convergence toleraneg = 1071° was used in all the calculations. This method
shows good convergence behavior, even where the resulting Poisson equation has a
jump in coefficients or a singular source. Even though the number of iterations needec
convergence varies with simulation problems and stages of physical processes, less th
iterations in general could reach the tolerance in our calculations.

As four inner product operations are involved for one iteration, global communicatif
is relatively significant. This is the common feature of all the iterative methods based
Krylov subspace. For implementation on a massively parallel environment, it might
necessary to make use of other types of solvers such as the multigrid method.

The preconditioning matriK is formulated as a tridiagonal approximation in this study
For a linear system arising from a standard finite difference discretization of the Pois!
pressure equation, matrix can be written as

A= D+Ax+Ay+Az,

whereAy, Ay, and A, represent the elements in tkey, andz directions, respectively.
The corresponding preconditioning matkxis written as

K= (D+A;+A])DH(D+A; +A))D D+ A; +AY).

Similar to an ADI type algorithm, each component in they, or z direction forms a
tridiagonal system. So a compldtel decomposition can easily be cast as

K = (D5+ AL) (14 DAY) D (D; 4 AY) (1D, AY) D™ (D; -+ AL) (1 + D, AY).

Thus, the computation df x =y can be carried out as
(D5t + A (1 + DxA P =,
(parallelizable in they andz directions)
-1(n-1 L U —
D=Y(Dy  + AL) (I + DyAY )xo = X4,
(parallelizable in thex andz directions)
D1(D; + AL) (1 + DAY )x = X,
(parallelizable in thex andy directions).

For 1D partitioning in thez direction, four sweeps of global access faire required to
change the patrtition direction per Bi-CG iteration.
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6. PRELIMINARY NUMERICAL TESTS

We first computed a solid object undergoing steady translation at a low gpieestokes
flows. Some similar samples can also be found in the works of Pan and Banerjee [17,
As discussed in [10], some analytical solutions are available for Stokes flows. Consid
sphere translating with a steady velooityin a Stokes flow. The velocity field induced by
this moving particle can be expressed by

2
V(X) = 3avs - (1 + %Vz) ? (69)

wherea is the radius of the spher@ (x) is the Oseen tensor, given by
1 3
‘I’(X)ij = F(Sij + r—3Xi Xj- (70)

We calculated this problem by setting a particle of radius of only two grid spacin
moving downward at a spead = —wsk in a quiescent flow (as shown in Fig. 7). The
Reynolds numbeR = 2aws/v is 0.006. This value makes the flow close to a Stokes flow
The calculation was continued until the flow became steady with the frame moving at
speed of the particle. The velocities in the direction parallel to the motion of the parti
are plotted in Fig. 8 against the analytical velocities. We observed that the present m
produces results very close to the analytical solution. In Fig. 9 we compared the velo
component perpendicular to the velocity of the particle to the analytical velocities at differ:

FIG. 7. A steadily moving sphere in Stokes flow.
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FIG. 8. The velocity component parallel to the moving speed of the partiglat distances ofz, — z)/
(2a) = 1.5 (upper) andz, — 2)/(2a) = 4.5 (lower) below the particlez, is the particle location and the radius
of the patrticle.

levels apart from the particle, and here as well we found an agreement between the nume
results and the analytical solutions.

The second example we used to validate this model is the drag coefficient of a sphel
a viscous flow. As given in [18], an empirical formula for the drag coefficient of a sphe
Cq4 can be written as

S0 o4
TR 1+VR,

where R, =Udy/v is the Reynolds numbet) the velocity of the main streandl, the
diameter of the sphere, amdhe kinematic viscosity.

A sphere with a diametek, = 10 x gridspacing is centered ina 70 x 104 3D compu-
tational mesh. The numerical outputs of the drag coefficient for different Reynolds numb
are plotted against those predicted with (71) in Fig. 10. We observed that the present m
gives reasonable results for a Reynolds number less tifamiBe present calculations, the
solid body is represented by the color function defined on a rectangular mesh, and no
nipulation is used for reconstructing the surface of the solid body. For a viscous flow of |
or moderate Reynolds number, the overall fluid flow seems insensitive to the solid surf:

As another test computation, the interactions between a log and the suspending |
were simulated. Nearly incompressible liquid was put hydrostatically in a tank with grav
pointing downward. A layer of gas laid above the liquid was also computed using numeri

Cq 0<R, <2x 10, (71)
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FIG. 9. The velocity component normal to the moving speed of the partiglat distances ofz, — 2)/
(2a) = 1.5 (upper) andz, — 2)/(2a) = 4.5 (lower) below the particlez, is the particle location and the radius
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FIG. 10. The drag coefficient of a sphere.
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algorithms identical to those for the liquid in a unified procedure, and no extra treatment \
needed across the gas/liquid interface (this applies also to the following sample simulati
A log was initially released from above the fluid surface, and fell down through the flu
under the effect of gravity. A 3D mesh of 15@as used. Figure 11 shows the time evolutior

FIG. 11. Time evolves from left to right and from top to bottom at an increment of 0.1. The density ratio
the fluid and the log i®, : ps=1.0:50x 1.07%.
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FIG. 12. The displacement in the gravitational direction of the mass center of the log.

of the log and the suspending fldvEluid motion was caused by the falling log, and then
interacted with the log as well as the tank wall. The log changed its motion according
the net force and torque it received from the suspending fluid. The log finally lay in
orientation along the fluid surface. Since the log had a density less than that of the lig
it experienced an oscillation in the gravity direction under the force of floating. Figure .
shows the displacement in the gravitational direction of the mass center of the log. Eve
the fluid flow appears quite complex, the oscillation period of the mass center experier
no significant change.

As an example of treating complex geometry, we simulated a rotating spherical c:
rising from liquid under the force of floating. The cage is a hollow sphere with six hole
on the surface as shown in Fig. 13a. It gives a too complex geometry for many numer
methods to deal with. From Fig. 13b, we observe a faithfully presented geometry of
cage. The cage has a density 10% that of the liquid, and rotated initially along the gra
direction. Figure 14 shows the time development of the proc&bse. cage rose from under
water and drove out the surrounding fluid. Part of the fluid was carried up by the cage
then leaked out from the holes. The cage then approached its equilibrium state and st
on the fluid’s surface. The simulation result appears reasonable.

As an application to the water entry problem, the present numerical model was use
simulate the impact of a circular disk entering the free surface of fluid in a low-speed regir
The reasons why some animals of moderate size can support their body weight on the v
surface were discussed by Glasheen and McMahon [5]. The forces the animals obta
support themselves are considered to be produced by slapping and stroking the water
their feet. To investigate the hydrodynamic forces of low-speed water entry, Glasheen
McMahon [6] systematically conducted experiments to measure directly the impactand c

1 An “mpeg” movie can be found on http://atlas.riken.gojpao/3D-SOLIDINLIQUID.
2 An “mpeg” movie can be found on http://atlas.riken.go-jpao/3D-SOLIDINLIQUID.
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FIG. 13. (a) The initial cage. (b) The cage at the end of the calculation.

forces for circular disks dropped in water at low Froude numbejdigk]?/gr =1 — 80,
wherer is the radius of a diskg the gravitational acceleration, anftlisk] the velocity of
the disk).

We simulated the water entry of a circular disk at various low Froude numbers. Simi
to the experimental conditions described in [6], two layer fluids with the density of ¢
and water were initially in a hydrostatic balance. A circular disk with a downward impa



374 FENG XIAO

FIG.14. Aspherical cage floating up from under water with an initial rotation along the gravitational directio
Time increases from left to right and from top to bottom.
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FIG. 15. Water entry of a circular disk at a low Froude numbefd{sk]?/gr = 25.51). Time increases from
left to right and from top to bottom at an increment 08 % 107* s.

speed ([disk]impac) Was initially put on the surface of the heavier fluid. Figure 15 is th
cross-section views of the disk and the surrounding fluids at a Froude number of 25
The disk entering the water drives away the fluid and creates a cavity behind it. When
inertial effects induced by the disk impact are balanced by the pressure in the surroun
water, the fluid will be driven back toward the open cavity and an isolated air bubble ¢
be produced behind the disk.

A sudden change in the vertical velocity of a disk entering the liquid surfagfdisk],
was observed during the impact. In [@u[disk] was measured for the cases in which the
relative change in disk momentum @[disk]/u[disK]impac) Was less than 7% to make the
data comparable to the theoretical estimates of Birkhoff and Zarantonello [1].

In order to make a quantitative comparison with the experimental results, calculati
were carried out with different Froude numbers by changing disk radius. A density 10 tin
that of the liquid was used for the circular disk to ensure that the changes in disk velo
during the period of impact were less than 8% in the numerical results. Simulations w
conducted with different radii for the circular disks. Figure 16 shows the vertical spe
profiles of the disks with an entering speed of 1 m/s. In all the cases, a sudden deceler:
in disk velocity occurs during the impact which is dominant in the early stage of the ent
The velocity slows down more significantly as the radius increases.

According to [6], the virtual mass (mass of fluid that accelerates during imp&gta)
can be calculated as

Myirual = MaiskAu[disk]/u[disK]finai, (72)
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FIG. 16. Downward velocity profiles for different disk radii. All the disks have the same thickness (7 mn
and the same density (20piquia)-

wheremy;sk is the disk’s mass ang{disk]sina is computed by
u[disKlfinal = U[diSk]impact_ Au[disk].
Then, a dimensionless virtual maskcan be defined as

Myirtual
= 73
(4/3)7 piiquidr (73)

From the experiments, Glasheen and McMahon concluded that the virtual mass of
fluid accelerated during impact increased linearly vyith,iqr ® along a slope of 32 and
the impact impulse rose linearly witl{disk]sina. The dimensionless virtual mabs has a
value of 0.34.

As plotted in Fig. 17, our calculated results agree well with Glasheen and McMaho
observation.

We also investigated numerically the disks with lighter mass which are expected
experience larger changes in the falling velocity during impact. A density which is the sa
as that of the liquid was used for the disk. The impact speed was 2 m/s. The velocity prof
of the disks are plotted in Fig. 18. Similarly, sudden changes in disk velocities are obsen
With smaller inertia mass, a lighter disk is decelerated to a larger extent. For the case
which the change in speed is larger than 20%, we plotted again the virtuahmagsin
Fig. 19 againspiiquiar 3. The virtual mass increases along a slope which appears to be I
linear and slightly steeper than the slope of 1.42. This preliminary result suggests th
modification to the linear scaling relation between the virtual mass and the product of
mass density of liquid and the cube of the disk radius should be taken in account fot
entry in which the falling velocity of a disk is largely changed during impact.
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FIG. 17. The virtual mass of a disk, with a radiusrises as the mass of the water ballqr ) increases.
The symbols are the simulated results. The solid line indicates the 1.42 slope of Glasheen and McMahon.
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FIG. 18. Downward velocity profiles for different disk radii. All the disks have the same thickness (7 mn
and the same densityifyid).
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FIG. 19. Same as Fig. 17 but for the disks having a density;Qfq.

7. CONCLUSIONS

We have presented a computational model for flows suspending large rigid obje
The moving bodies are represented by color functions and solved by an advection sc
that gives geometrically faithful results with transition regions of compact thickness. T
pressure Poisson equation is computed over the entire computational domain. Volume fc
are then calculated at every grid point, and the net force and torque are obtained by vol
integration for all the rigid objects.

The code has been implemented on a parallel environment of distributed memory. It
tested with some solid/fluid suspension problems, and reasonable solutions were the
obtained.

This model should be applicable to many practical applications, such as floating struc
simulation, water entry dynamics, and direct simulation of particulate flow.
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